Photodynamic inactivation of Bacillus spores, mediated by phenothiazinium dyes.

نویسندگان

  • Tatiana N Demidova
  • Michael R Hamblin
چکیده

Spore formation is a sophisticated mechanism by which some bacteria survive conditions of stress and starvation by producing a multilayered protective capsule enclosing their condensed DNA. Spores are highly resistant to damage by heat, radiation, and commonly employed antibacterial agents. Previously, spores have also been shown to be resistant to photodynamic inactivation using dyes and light that easily destroy the corresponding vegetative bacteria. We have discovered that Bacillus spores are susceptible to photoinactivation by phenothiazinium dyes and low doses of red light. Dimethylmethylene blue, methylene blue, new methylene blue, and toluidine blue O are all effective, while alternative photosensitizers such as Rose Bengal, polylysine chlorin(e6) conjugate, a tricationic porphyrin, and a benzoporphyrin derivative, which easily kill vegetative cells, are ineffective. Spores of Bacillus cereus and B. thuringiensis are most susceptible, B. subtilis and B. atrophaeus are also killed, and B. megaterium is resistant. Photoinactivation is most effective when excess dye is washed from the spores, showing that the dye binds to the spores and that excess dye in solution can quench light delivery. The relatively mild conditions needed for spore killing could have applications for treating wounds contaminated by anthrax spores, for which conventional sporicides would have unacceptable tissue toxicity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Inhibitors of bacterial multidrug efflux pumps potentiate antimicrobial photoinactivation.

Antimicrobial photodynamic inactivation (APDI) combines a nontoxic photoactivatable dye or photosensitizer (PS) with harmless visible light to generate singlet oxygen and reactive oxygen species that kill microbial cells. Cationic phenothiazinium dyes, such as toluidine blue O (TBO), are the only PS used clinically for APDI, and we recently reported that this class of PS are substrates of multi...

متن کامل

Photodynamic Inactivation of Endopathogenic Microbiota Using Curcumin- mediated Antimicrobial Photodynamic Therapy

Root canal disinfection is one of the main factors governing success of endodontic therapy. Antimicrobial photodynamic therapy (aPDT) is presented as a promising antimicrobial therapy that can eliminate microbiota present in infected root canal systems. In this study, a series of experiments investigated the effects of aPDT on cell viability and biofilm degradation ability of endopathogenic mic...

متن کامل

Potentiation of photoinactivation of Gram-positive and Gram-negative bacteria mediated by six phenothiazinium dyes by addition of azide ion.

Antimicrobial photodynamic inactivation (APDI) using phenothiazinium dyes is mediated by reactive oxygen species consisting of a combination of singlet oxygen (quenched by azide), hydroxyl radicals and other reactive oxygen species. We recently showed that addition of sodium azide paradoxically potentiated APDI of Gram-positive and Gram-negative bacteria using methylene blue as the photosensiti...

متن کامل

Phenothiazinium antimicrobial photosensitizers are substrates of bacterial multidrug resistance pumps.

Antimicrobial photodynamic therapy (PDT) combines a nontoxic photoactivatable dye, or photosensitizer (PS), with harmless visible light to generate singlet oxygen and free radicals that kill microbial cells. Although the light can be focused on the diseased area, the best selectivity is achieved by choosing a PS that binds and penetrates microbial cells. Cationic phenothiazinium dyes, such as m...

متن کامل

Enhancing the efficacy of photodynamic cancer therapy by radicals from plant auxin (indole-3-acetic acid).

Indole-3-acetic acid (plant auxin) has low toxicity but dramatically enhances the killing of mammalian cells on illuminating phenothiazinium dyes with red light. Suitable dyes include toluidine blue, used in cancer diagnosis because of localization in tumors, and methylene blue, used in experimental photodynamic therapy of cancer. The photosensitized oxidation of indole acetic acid forms a free...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Applied and environmental microbiology

دوره 71 11  شماره 

صفحات  -

تاریخ انتشار 2005